3.41 \(\int \csc ^4(e+f x) (a+b \tan ^2(e+f x)) \, dx\)

Optimal. Leaf size=42 \[ -\frac{(a+b) \cot (e+f x)}{f}-\frac{a \cot ^3(e+f x)}{3 f}+\frac{b \tan (e+f x)}{f} \]

[Out]

-(((a + b)*Cot[e + f*x])/f) - (a*Cot[e + f*x]^3)/(3*f) + (b*Tan[e + f*x])/f

________________________________________________________________________________________

Rubi [A]  time = 0.0432361, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {3663, 448} \[ -\frac{(a+b) \cot (e+f x)}{f}-\frac{a \cot ^3(e+f x)}{3 f}+\frac{b \tan (e+f x)}{f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^4*(a + b*Tan[e + f*x]^2),x]

[Out]

-(((a + b)*Cot[e + f*x])/f) - (a*Cot[e + f*x]^3)/(3*f) + (b*Tan[e + f*x])/f

Rule 3663

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff^(m + 1))/f, Subst[Int[(x^m*(a + b*(ff*x)^n)^p)/(c^2 + ff^2*x^2
)^(m/2 + 1), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rule 448

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[ExpandI
ntegrand[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[p, 0] && IGtQ[q, 0]

Rubi steps

\begin{align*} \int \csc ^4(e+f x) \left (a+b \tan ^2(e+f x)\right ) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (1+x^2\right ) \left (a+b x^2\right )}{x^4} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \left (b+\frac{a}{x^4}+\frac{a+b}{x^2}\right ) \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{(a+b) \cot (e+f x)}{f}-\frac{a \cot ^3(e+f x)}{3 f}+\frac{b \tan (e+f x)}{f}\\ \end{align*}

Mathematica [A]  time = 0.0685022, size = 60, normalized size = 1.43 \[ -\frac{2 a \cot (e+f x)}{3 f}-\frac{a \cot (e+f x) \csc ^2(e+f x)}{3 f}+\frac{b \tan (e+f x)}{f}-\frac{b \cot (e+f x)}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^4*(a + b*Tan[e + f*x]^2),x]

[Out]

(-2*a*Cot[e + f*x])/(3*f) - (b*Cot[e + f*x])/f - (a*Cot[e + f*x]*Csc[e + f*x]^2)/(3*f) + (b*Tan[e + f*x])/f

________________________________________________________________________________________

Maple [A]  time = 0.077, size = 54, normalized size = 1.3 \begin{align*}{\frac{1}{f} \left ( b \left ({\frac{1}{\cos \left ( fx+e \right ) \sin \left ( fx+e \right ) }}-2\,\cot \left ( fx+e \right ) \right ) +a \left ( -{\frac{2}{3}}-{\frac{ \left ( \csc \left ( fx+e \right ) \right ) ^{2}}{3}} \right ) \cot \left ( fx+e \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^4*(a+b*tan(f*x+e)^2),x)

[Out]

1/f*(b*(1/sin(f*x+e)/cos(f*x+e)-2*cot(f*x+e))+a*(-2/3-1/3*csc(f*x+e)^2)*cot(f*x+e))

________________________________________________________________________________________

Maxima [A]  time = 1.05946, size = 54, normalized size = 1.29 \begin{align*} \frac{3 \, b \tan \left (f x + e\right ) - \frac{3 \,{\left (a + b\right )} \tan \left (f x + e\right )^{2} + a}{\tan \left (f x + e\right )^{3}}}{3 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*tan(f*x+e)^2),x, algorithm="maxima")

[Out]

1/3*(3*b*tan(f*x + e) - (3*(a + b)*tan(f*x + e)^2 + a)/tan(f*x + e)^3)/f

________________________________________________________________________________________

Fricas [A]  time = 1.79929, size = 163, normalized size = 3.88 \begin{align*} -\frac{2 \,{\left (a + 3 \, b\right )} \cos \left (f x + e\right )^{4} - 3 \,{\left (a + 3 \, b\right )} \cos \left (f x + e\right )^{2} + 3 \, b}{3 \,{\left (f \cos \left (f x + e\right )^{3} - f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*tan(f*x+e)^2),x, algorithm="fricas")

[Out]

-1/3*(2*(a + 3*b)*cos(f*x + e)^4 - 3*(a + 3*b)*cos(f*x + e)^2 + 3*b)/((f*cos(f*x + e)^3 - f*cos(f*x + e))*sin(
f*x + e))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tan ^{2}{\left (e + f x \right )}\right ) \csc ^{4}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**4*(a+b*tan(f*x+e)**2),x)

[Out]

Integral((a + b*tan(e + f*x)**2)*csc(e + f*x)**4, x)

________________________________________________________________________________________

Giac [A]  time = 1.51136, size = 72, normalized size = 1.71 \begin{align*} \frac{3 \, b \tan \left (f x + e\right ) - \frac{3 \, a \tan \left (f x + e\right )^{2} + 3 \, b \tan \left (f x + e\right )^{2} + a}{\tan \left (f x + e\right )^{3}}}{3 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*tan(f*x+e)^2),x, algorithm="giac")

[Out]

1/3*(3*b*tan(f*x + e) - (3*a*tan(f*x + e)^2 + 3*b*tan(f*x + e)^2 + a)/tan(f*x + e)^3)/f